Exercise 21.50

Q. A very long, straight wire has charge per unit length λ. At what distance R from the wire is the electrified magnitude equal to E?

Solution. "Very long" assumes the wire is infinitely long.

If that's the case, the Gaussian surface is a cylinder where the E-field is perpendicular at all points.

\[E = \frac{1}{2\pi\varepsilon_0} \frac{\lambda}{R} \]

\[R = \frac{\lambda}{2\pi\varepsilon_0 E} \]

Let λ, charge per unit length (linear charge) be 3.80×10^{-10} C m$^{-1}$

\[E = 2.90 \text{ N/C} \quad \varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^2 \]

\[R = 2.36 \text{ m} \]

\[\left\{ \begin{array}{l}
E = 2.90 \text{ N/C} \\
\lambda = 3.80 \times 10^{-10} \text{ C m}^{-1}
\end{array} \right. \]